Embeddings of Beppo-Levi spaces in Hölder-Zygmund spaces, and a new method for radial basis function interpolation error estimates

نویسندگان

  • Richard K. Beatson
  • H.-Q. Bui
  • Jeremy Levesley
چکیده

The Beppo-Levi native spaces which arise when using polyharmonic splines to interpolate in many space dimensions are embedded in Hölder-Zygmund spaces. Convergence rates for radial basis function interpolation are inferred in some special cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree

We consider error estimates for the interpolation by a special class of compactly supported radial basis functions. These functions consist of a univariate polynomial within their support and are of minimal degree depending on space dimension and smoothness. Their associated \native" Hilbert spaces are shown to be norm-equivalent to Sobolev spaces. Thus we can derive approximation orders for fu...

متن کامل

Radial Basis Function Interpolation in Sobolev Spaces and Its Applications

In this paper we study the method of interpolation by radial basis functions and give some error estimates in Sobolev space H(Ω) (k ≥ 1). With a special kind of radial basis function, we construct a basis in H(Ω) and derive a meshless method for solving elliptic partial differential equations. We also propose a method for computing the global data density. Mathematics subject classification: 41...

متن کامل

Essential norm estimates of generalized weighted composition operators into weighted type spaces

Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...

متن کامل

Stable Gaussian radial basis function method for solving Helmholtz equations

‎Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems‎. ‎They are often referred to as a meshfree method and can be spectrally accurate‎. ‎In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion‎. ‎We develop our approach in two-dimensional spaces for so...

متن کامل

Meshless Collocation: Error Estimates with Application to Dynamical Systems

In this paper, we derive error estimates for generalized interpolation, in particular collocation, in Sobolev spaces. We employ our estimates to collocation problems using radial basis functions and extend and improve previously known results for elliptic problems. Finally, we use meshless collocation to approximate Lyapunov functions for dynamical systems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 137  شماره 

صفحات  -

تاریخ انتشار 2005